AD=AL120 372

uliCLAGSTFIED

TEXAS UNTV AT AUSTIN DEPT OF COMPUTER SCIENCES Fr6 1772

PROVING SAFETY AND LIVENESS OF COMMUNICATING PROCESSES WITH EXA=-ETC (1)

AUG 82 J MISRA, X M CMANDY, T SMITH AFOSR=81«020%
AFOSR=-TR=82-0883

’ . : W IR |
__UNCLASSIFIED (.
: SECURITY ELASSIFICATION OF THIS PAGE (When Data Entered) i

REPORT DOCUMENTATION PAGE BER o ot RN
[T REPORT NUMBER 7 GOVT ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER |
AF_%R'm. 82-0883 P’ﬁl’—o)
4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED
N PROVING SAFETY AND LIVENESS OF COMMUNICATING TECHNICAL
pROCESSEs w‘[TH EWLES 6. PERFORMING OXG. REPORT NUMBER
: 7. AUTHOR(a) 8. CONTRACT OR GRANT NUMBER(a) u
o J. Misra, K.M. Chandy, and Todd Smith AFOSR-81-0205 !
i
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT TASK ‘
A\ Computer Sciences Department AREA & WORK UNIT NUMBER ‘
H University of Texas . PE61102F; 2304/A2
< Austin TX 78712
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Directorate of Mathematical & Information Sciences| August 1982
o) Air Force Office of Scientific Research 13. NUMBER OF PAGES “
< Bolling AFB DC 20332 8

Td. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 15. SECURITY CLASS. (of this report)

UNCLASSIFIED
[78a, DECL ASSIFICATION/ DOWNGRADING
SCNEDULE

[Te. DISTRIBUTION STATEMENT (of this Report) ‘
Approved for public release; distribution unlimited. D

ELECTE

OCT 1 8 1882

17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, if different from Report)

.- B

18. SUPPLEMENTARY NOTES
Proceedings of the ACM SIGACT/SIGOPS Conference on the Principles of Distributed
Computing, August 18-20, 1982, Otawa, Canada.

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Communicating processes; message-passing systems; proofs of process networks;
safety; liveness.

ABSTRACT (Continue on reverse side If necessary and Identily by block number)

A method is proposed for reasoning about safety and liveness properties of
message passing networks. The method is hierarchical and is based upon com- P
bining the specifications of component processes to obtain the specification
of a network. The inference rules for safety properties use induction on the &
number of messages transmitted; liveness proofs use techniques similar to
termination proofs in sequential programs. The authors illustrate the method
with two examples: concatenations of buffers to construct larger buffers and ﬂ
a special case of Stenning protocol for message communication over *¢GONT)————

L FILE TOPY

8 AN 1473 EOITION OF 1 NOV 68 I8 OBSOLETE M
: SECURITY CLASHFICATION OF THIS PAGE 0

B T i aa s - - ¢ o oD ST
- D
" SECYURITY CLASSIFICATION OF THIS PAGE(When Data Bntered)
> i

vy e e w‘.:;v*- ‘

ITEM #20, ‘CONTINUED: noisy channels. R

| Accesslon Por ‘
713 GRA&I—f—
|

i DPIC TAB
t

. Uunnnouneed D i
i Justification
i
! By .
+ Distrivution/ |
¢ Availability Codes

- e

= s - : ,.Avai]. and/or

. o :Dist Special

UNCLASSIFIED

SECUNITY CLASHFICATION OF Tvic pAGE(Wiven Dats Rnte: .«

i . — o ol Idali‘i " ;o

= 3 BT AN R AN O LR S o 7k g T 1) =
oo

_APOSR-TR- 82-0883

ABSTRACT

A method is proposed for reasoning
about safety and liveness properties of
message passing networks. The method is

+ - hierarchical and is based upon combining
the specifications of component processes
to obtain the cpecification of a network.
The inference rules for safety properties
use induction on the number of messages
transmitted; liveness proofs use techniques
similar to termination proofs in sequential

KignT bl

i ’ programs. We illustrate the method with
3 two examples: concatenations of buffers to
a; construct larger buffers and a special

%, case of Sterning protocol for message com-
%f munication over noisy channels. .
%: Key ¥Words and Phrases: communicating

é} processes, message-passing systems, proofs
&= of process networks, safety, liveness.

4 .

o CR-Categories: C.2.2, C.2.4, D.1.3,

F.3.1, F.3.2

1. INTRODUCTION

% This paper presents a method for rea-
K soning about safety and liveness proper-
A ties of networks of processes in which
i communication is through messages only.
;;% The k2y features of this method are:

(1) Modular Specification: We present a
scheme for specifying processes in a
modular fashion. The specification
relies exclusively on a process's

*

This work was supported by the Air Force

Office of Scientific Research under grant
APOSR 81-0205 and the University Research
Institute at the University of Texas.

AT N ML VKA1 i T s

PROVING SAFETY AND LIVENESS OF COMMUNICATING
PROCESSES WITH EXAMPLES

J. Misra, K. M. Chandy and Todd Smith
Computer Sciences Department, University of Texas, Austin 78712

interaction with its environment and
is independent of process implemen-
tation,

(2) Hierarchy: We present inference rules
by which a specification for a net-
work is derived from specifications
of component processes. Thus the
proof of a network is not concerned
with implementations of component
processes. i

—

ramming Proof Techniques: We have
extended well known sequential pro-
gramming proof constructs such as pre-
. ocondition, post-condition and the
' ~ideas of termination proof to distri-~
: buted systems. Those familiar with
the Floyd-Hoare proof technique for
sequential programming should find
our method to be straightforward.

(3) Compatibility With S;guential Pro-

‘The organization of this paper is as
follows. We descrite a model of computa-
tion in section 2. Ve discuss the proof
technique in section 3. Section 4 con-
tains the example of concatenations of
buffers to construct larger buffers. We
prove a special case of the Stenning pro-
tocol for message communication over noisy
channels, in section S.

Apt, DeRoever, Francez 1] and Levin,
Gries [4) propose alternate proof tech-
nigues. Both these works depend upon
analysis of code fragments of two communi-
cating processes to ensure that only de-
sirable communications take place., Pjio-
neering work using temnoral logic in
proving liveness properties is due to
Owicki and Lamport (7]. Hailpern (2] pro-
poses proof techniques using temporal log-
ic for general concurrent programs which
include both shared memory as well as
wmessage passing systems., A proof of Sten-

ning protocol appears in Hailpern, Owicki

l”o
2. MODEL OF A NETWORK

Our reasoning technique is applicable
to a variety of network models and proto-
cols. However we confine our discussion
to an extremely simple network model. In
this soction our goal is to define a wmodel,

\
Approved for public releass?
distribution unlimited.

88 10 18 009

I R

s

not a programning language; hence syntac-
tic issues will be treatcd informally.

‘A process is cither a sequential pro-
cess or a network of processes. A sequen=
tial process is a sequential program wit
commands for message transmission. It may
have input sorts through which messages
are received and output ports through
which messages are sent. An output port
of onc process may be connccted to the in-
put port of another process by a directed
channel, A port is connected to one cha-
nel and a channel is always connccted to
one input port and one output port. All
connections of ports and channels are
static.

A sequential process h can execute a
send command which has the form:

send m via p

where m is a local variable and p is an
output port of h. Process h continues exe-
cution of its program following execution
of the send command. Execution of this
command results in a message m being sent
along the channel to which output port p
is connected. Messages sent along a chan-
nel arrive at their destination in the
order sent and after an arbitrary but fi-
nite delay.

A sequential process h can execute a
receive command which has the form:

receive m via p

where m is a local variable and p an input
port of h. Execution of this command re-
sults in the first message (if any) which
has arrived at the input port p being re-
moved, and its value assigned to m. If
there is no such message, h waits until a
message arrives at the port. A process
can algso test "shether there is a message
at an input port; for instance it may
execute a statement of the form: if there
1; a message at input port p then sl else
' .

A network is also a process with input
and output ports. A network consists of
one or more component processes whose
ports are connected by channels. Any port
of a component process, which is not con-
nected by a channel to another component
process port, is a port of the network.

Example: A Sequential Process: Merge2

This process receives monotone increas-
ing sequences along its two input ports
in{1] and in(2]) and produces the merged
monotone increasing output ssguence along
its single output port out. 1ts sequen-
tial program is given below.

Process Merge2 (input port Lnlll. inf2);
cutput port out)
receive x, via in(l);

receive Xy via inf(2);:

while true do (loop forever)
ITx, < x, then

begin send x; via out;

receive Xy via infl)
end
éIéE if Xy € ¥y
begin send x, via out;
receive X, via in{2]

then

end
clse {x) = xz)

begin send Xy via out;
receive Xy via inf{l);

receive X, via in{2])
end

Example: P Network: mergel

merge3 receives monotone increasing
sequences along 3 input ports in{1}], in{2}]
and in[3):; it outputs the monotone increas
ing merged sequence along its single out-
put port out, merge3 can be implemented
as a network of two component merge2 pro-
cesses. .

3. PROOFS OF PROCESSES

vie use some ideas from sequential pro-
gram proofs in proofs of message~passing
systems., In an annotated proof of a se-
quential program, each statement s has a
nrecondition pre(s) and a postcondition
post(s). The proof shows that if asser-
tion pre(s) holds prior to execution of s,
post(s) holds following execution of s
assuming execution of s terminates. We
shall use the precondition/postcondition
concept for describing process safety pro-
perties. Proofs of liveness (or termina-
tion) in sequential programs are based on
deronstrating the existence of a metric
such that the execution of each statement
causes the metric to decrease in value.
‘le will use a similar technique in pro-
cess proofs. However, processes can wait
indefinitely for messages, something that
conventional secuential programs Jdo not
do; to handle this we introduce a new con-
cept called activity which is the condi-
tion under which a process will definitely
send or receive a message. Other liveness
properties are derived from the basic pro-
perty of activity and from safety.

3.1 Trace

A trace of a process h is a sequence
of tuples <{port ,v (port,,va)seees
(portn,vn)>. whete n some c&up&tatlon the
ith message sent or reccived by h is
through port1 and has value Vi 1f portt

is an anutput (input) port then h sent
{received) v, through port,. Thus the

trace is a chronological scquence of all
interactions that a process has with its
environment in a particular computation.

An assertion r holds at all points of
a trace T: <(pottl.vl)....(portn,vn)...>.

if r holds for all initial prefix traces

A gt

NPEY Y AT S

ONANNNIN i,

Caies

!
|
'

Do Mt G WELIE0 T A . AR CAGPEAERID, et NS SRR . $... A A VRO e e+ —

Rl fot ML S TS "
T N LT st nser wanepoconc

. <(port1.v1)...(porti,v1)>, 1>0, of T. Note

that r must then hold for the null trace,
i.e. the trace which has no element. The
trace T' : <T;(port,v)> which has T as
the initial prefix trace and onc more ele-
ment, is called an cxtension of T.

The sequence of messages transmitted or
received by a process h via port, will be
denoted by h.gorti {or port, wheh we are

discussing process h). Let Z, Z1 and 22
be sequences of messages. Then |2} is the
length of Z and 21 a 22 denotes that 21 is
an initial subsequence of 22. Note that

2 a 2, for all Z,

3.2 Specification of a Process

We use three propositions r, s and g to
specify a process h, and the specification

will be denoted by tlgls ; r is called the

precondition, s the postcondition and q
the activity condition. r and s are asser-

tions on traces of h while q is an asser-
tion on the trace of h and the empty/non-
empty status of the channels connected to
its ports.

rl%ls means that

(1) s holds for the null trace,

(2) if r holds at all points of a trace
T of h then s holds at all points
of any trace T' of h, where T' is
an extension of T, :

(3) if r holds at all points of a trace
™ of h and q holds for T then there
exists a trace T' of h which is an
extension of T.

The second condition does not state
that the trace T will be extended to T';
it merely states that if the trace is ex-
tended then s holds for the extended trace,
The third condition is a sufficient condi-
tion under which the trace of h will defi-
nitely be extended. Since all process
speeds are assumed to be non-zero and fi-
nite, the phrase "trace of h definitely
will be extended” means that no process
can have its trace extended indefinitely
without the trace of h being extended.

The proof tl%ls for a sequential pro-

cess, requires one sequential program
proof. A proof method appears in (5],
when q is absent; it has been applied in
a number of examples in [6]. We have not
included the proof method in this paper.
In nert section, we show how the specifi-
cations of a network can be proven from
specitications of component processes.

3.3 Theorem of Hierarchy

The theorem of hierarchy gives the con-
ditions under which we can,deduce ll%ls.
for a netvork H, given r‘l‘ﬁl-i ,» for all

$D TNV S ey o e ety e Tra———

processes h, in lI, We first present an !
axiom - the communication Axiom ¢ - which
captures the essence of the proposed com-
munication protocol. The only assumption
made about the communication protocol in

the theorem of hierarchy is the communica-
tion axiom C; thercfore changes in the
protocol only affect C and not the theorem

of hierarchy directly.

We give C for the model of section 2.
1f there is a channel linking the output
port p, of process h, with input port p
of h %hen the sequernice of messages re-
ceivgd by h? throuch p, must be an initial
subsecquence of the mesgages sent by h1
throuch P,- Formally,

h,.p, a h).p

Let the port P of the network H be the
same as the port p of the component pro-
cess h; then since renaming of a port does
not alter the message sequence through it,

H.P = h.p

Combining these we have the communication
axiom,

€ :: If there is a channel linking '
output port p; of h,y with input

port P, of hz, then hz.p2 a hl'pl'

If port P of H is the same as ;
port p of h, then H.P = h.p. ¢

h
Given r1|—£|s . for all processes
q;'1

hi' i=1,2,... in a network H, we give con-
‘ditions under which nlgls holds. Let,

d . d
s = C 5%f si,'r = 3%— ri, q= %F q1

3.3.1 Statement of the Theorem of Hierarchy

. hi
If, (i) rilazlsi, i=1,2,...

(ii) 8 and R = r, (harmony}
(1ii) s => s, (abstraction} §
(iv) s and Q =» q {progress)} -

(v) s and @ => (I trace length
of h;) < F (trace length of H),
for some function P {(bouncedness

then ngls.

3.3.2 Explanation
Conditions (ii) and (iii) deal with
safety and (iv) and (v) with liveness.
ondition (ii), called the harmony condi-
tion says that all preconditions assumed
by the component processes are implied by

o e mhast s

Ll sy

the precondition of the network !l and the
posteonditions of the component processes.
Condition {iii), called the abstraction
condition, says that the network‘'s post-
condition must be derivable from the post-
conditions of component processes. Condi-
tion {iv), called the proagress condition,
states that the network can be active only
if some component process is active. Con-
dition (v), called the boundedness condi-
tions, states that processes cannot send
or receive messages indefinitely without
the network communicating as well*. The
essence of the safety rules is: cach time
the trace of some process hi is extended,

process hi guarantees s, (and hence s is

maintained) and harmony guarantees r for
the extended trace.

4. AN EXAMPLE: CONCATENATION OF BOUNDED
- BUFFERS

4.1 Operational Description of a Bounded
Buffer

A bounded buffer process of size b is
shown schematically in Figqure 1. This
process can hold at most b, b>0, items of
data. It is interposed between a producer
and a consumer. The process sends requests
for data via ro to the producer if it has
room for data (not all buffer spaces are
full) and if it has no outstanding request
to the producer. It receives data from -
the producer through di. 1t receives re-
quests from the consumer for data via ri
if it has some data (the buffer spaces are
not all empty) and if it has already ser-
viced all consumer requests; it subse-
quently sends data through do in such a
case. The goal of this example is to show
formally that concatenation of N buffers
of sizes bl'bz""'bu is equivalent to a

N

single buffer of size [bi'

i=l
ai do
F e ri consumer

<

Pigure 1: Bounded buffer of size b,

4.2 Specification of Bounded Buffer of
Size b

The buffer process of size b can be
specified by the assertions r, s and q. We
present each of the assertions in a formal
notation and th n explain in English. 1In
the following "a is empty,” where a is a
port of some process h, denotes that the
channel connected to a is empty.

£ 11 true

*Hoare terms this “absence of infinite
chatter.”

s :: |do| < |ri] < |do| + 1 (s1);

{The data to and requests from
the consumer alternate)

Jai) < |ro) < ldi} + 1 (s2);

{The requests to and c¢ata from
the producer alternate)

lzi) < ail (s3)

{no buffer underflow, i.e. no
request from the consumer is
accepted unless there is data)

Irol < ldo| + b (s4);
{no buffer overflow}
do a di (s5);
{buffer transmits the received
data in sequence}
g :+ (ldo} < |di) and |
(ldo| < |ri| or ri is not empty))
{buffer is not empty and all
requests sent by the consumer
have not been processed; data
will be sent to consumer}
or (Jdi]| < |do] + b and
{lre| = |di} or di is not empty))

{buffer is not full and producer
has responded to all requests
for data; request will be sent
to producer}

The problem is to show that concatena-
tion of any N buffers of sizes bl,b2 cee

bN has the same specification as a buffer
N

of size I bi' We show that the concate-~
=

nation of two buffers of sizes bl,b2 has

the same specification as a single buffer
of size.bl + bz. The proof follows for

N > 2 in a straightforward manner.

]
femeceestaieteimmcemranan
do ai do! DO
_)1__ H \g
] 4
ri Xo hzb X :RI ;:
L__._.' _Zlb P18
1+b2!

Figure 2. Concatenation of two
buffers of sizes bl'bz'

4.3 Proof of Bounded Juffer Concatenation

4.3.1 Harmony
Trivial, since r {s true.

-y e A

e

- ——m A

4.3.2 Abstraction

(s1) ,inof<|RE|<[pOf + 1
follows from,
Ihz.dolilhz.rililhz.do|+ 1 (s, forh,)

and the communication axiom C.
(s2) Proof similar to (sl).

(s3) |Rrr|<lpI]:
RI| = |h,.ri]<|h,.di}{C, s3 for h2)
= 2 2

Ihz.dililhl.dol (c)
Ihl-d°|i|h1-d1| = |p1|

(sl,83 for hl.C)
(s4) |RO|<|DO] + b, + b,:
|ro} = |h1.zo|5|h1.r1| + b,

(c and s4, sl for h,)
In,.rijs|hy.ro] (0)
|hz-r°|i|h2-d°| + b,

=|po| + b)
(s4 for h,, C)

(s5) Similar to proof of (sl).

4;3.3 Progress
We will show that if h1 is not active

(ql is false), hz is not active (q2 is
false) and s holds then H is not active
{0 is false). The negation of q, can be

written as a conjunction of two proposi-
tions, (i) and (ii):

(1) the buffer in h, is empty (lhl.dol -
Ihl.dii) h, is waiting for requests
from its consumer h, (lhl.dolulhl.ril
and channel h,.ri is emptyy, and

(11) the buffer in h; is full (|n,.di| =
Ih;.do| + b)) or h; is waitTng for
responise irom the producer In,.a1] <
(h,.ro| and channel h,.di is empty).

A similar set of propositions correspond

to -q, and -Q.

It is straightforward to conclude from

-9y and -q, that all buffers in h, are

empty or all buffers in h, are full. %e
now show that the eorre-psudtnq conditions
(1) and (ii) hold for N in this case.
Condition (1) for H im: all buffers ir ¥
are empty or H is waiting for requests
from the consumer. If all buffers in N
are not empty, then from the cbservation

in the first line of this paragraph, all
buffers in h, cannot be cempty, and there-
fore from ~q2, hz is waiting for requests

from the consumer. Condition (ii) can be
proven symmetrically.

4.3.4 DBoundedness

We can show vii.ng {=1).(s2),(s3), (s4)
for h1 and h., that the trace lengths of

h1 and h2 is no more than twice the trace
length of H.

5. STENNING PROTOCOL WITH WINDOW SIZE 1
(3,6}

Stenning protocol can be used to send
messages fros a producer to a consumer
over noisy channels. We consider a spe-
cial case of the Stenning protocol in
this paper - the transmitter sends a new
message only after it receives an ack-
nowledgement from the receiver for the
previous message; .f it reccives no ack-
nowledgement within a specified time -
period, it retransmits the message. The
full Stenning protocol allows the trans-

mitter to send more than one message with-

out having received acknowledgements.
Conceptually, the proof of full Stenning
protocol is only slightly more difficult
than the one presented here; a proof of
safety for the general case using methods
of this paper appears in [6].

This example illustrates the use of
the theorem of hierarchy on a problem in
which (1) the communication axiom C des-
cribed earlier is no longer valid, since
a channel can lose, duplicate and permute
messages asd? (2) time-out is an essential
feature of the protocol.

5.1 Description of Stenning Protocol

The communication network is shown
within dotted lines in Figure 3. Por
simplicity of description, each channel
has a name which is identical to the port
names at both ends.

r-.....-.'..-....‘..'.!.....--“

|
H tr ctr]

producer

]
[]
]
[}
]
]

lnmecsmascrronms vevsnowenccase e o

Figure 3 A network “o implement
Stenning Protocol.

The channels linking the tran.mitter
and receiver can lose, duplicate or per-
mute messages sent along them. The trans-
mitter receives a message from the pro-
ducer and transmits it along channel ctr
after appending an idenfifying sequence
number. It continues to retransmit the

message after some time unless it receives

e

w

MTRIEGR .. 5 e

AR S At

an acknowledgement (ack) for that message
along crt. Upon recriving an ack for the
last message sent, transmitter reccives
the next data item from the producer. The
receiver, upon receiving a data item along
ctr, checks to see if it is the last data
item it has transmitted to the consumer -
in this case it sends an ack along crt -
or if it is the next item to be trans-
mitted to the consumer (this is deter-
mined by the sequence number appended to
every data item) - in this case, it sends
the data item to the consumer and an ack
along crt.

If a channel loses all messages or
never delivers some particular message
even if it is transmitted many many times,
we cannot guarantee eventual delivery of a
message. Therefore we postulate the fol-
lowing communication axioms for every
channel a, {a.readlv)/a.sent(v) denotes
the number of times message v has been
received/sent along channel a},

(C1) a.read{v) >0 => a.sent(v) >0,
for all v;)
{every message received must have
been sent}

(C2) there exist monotone nondecreasing
functions fl,fz such that

£, (a.read(v)) < a.sent(v)
: < f,(a.read(v)) for allw

{every message sent often enough will
be received often enough and no
message is duplicated infinitely
often. This means i. particular
that a sender process cannot be
infinitely faster than the receiver
process)

Notation: To simplify notation, we assume
at every message is a tuple consisting
of a sequence number (a positive integer)
and a data item. Thus the ressages sent
by the producer to the transmitter, by
the transmitter to the receiver, by the
receiver to the consumer and the acks sent
by the receiver to the transmitter are all
tuples of the same form.

5.2 Specifications of Component Processes
S.2.1 specification of the transmitter

Let <(c1.v1)...(ci.vi)...(cn,vn)> be
the trace.

r 3: jth item received along port prod,
has sequence number }

s 11 (1) ¢ = prod, ¢y = prod, 1< = 3Ix,
1<k<d, (cp,v)) = lere,v,)

{A message is received along prod
only if ack to all earlier wes-
sages have heen received)

) ¢y = otr = 31, 13,

legovy) = (ptod.vj) and k, i<ke<j,
(eysvy) # lert,vy)

{A messace is transmitted along
ctr only if it has been received
alonc prod and no ack for it has
been received)

q s Vi(ci,vi) # (crt,prod(n)),

{The trace will definitely be
extended if an ack for the N-th
message has not been received}

Note: It follows that the last message
received from the producer will be retrans-
mitted indefinitely often unless an ack
for it is received. The trace will be
extended as long as ack for the N-th mes-
sage has not been received.

5.2.2 Specification of the receiver
(<(c1.vl),..,(c£,vi),..,(cL,vL)>
denotes the trace.)}

r :: true {no assumptions made about the
Tnput data}

g :: (1) cj = cons = (cj—l'vj-l)g (ctr,v&)

{only the last message received
along ctr can be sent along cons}

(2) cj'= crt = [cj_1 = cons oOr

cj-l

lvj = last(cons)

ctr] and

= last(ctr)],

where last(Z) denotes the last
message sent or received along
port Z.

° {An ack is sent only if the
lagt(ctr) and last{cons) match.
furthermore at most one ack is
sent after receiving a message.}

{3) The jth message sent along cons
has sequence number j.

s: ¢, = ctr and {v. = last(cons) or
q L anc v, ox
A last(cons) @ 1],

where last(cons) @ 1 denotes a mes-
sage with sequence number 1 higher
than last(cons).

{The receiver will extend its trace
if it receives along ctr, last(cons)
or last(cons) & 1; in the former
case, it sends an ack along crt and
in the latter case, it also sends a
message to the consumer.)

i

ALuleed . N

i Ve it SRR S

Bl rte RN o o\ Eid

TR 4, T

"

A s

5.2.3 Desired network proof

(<1c1.V1)..(cL.vL)> is the network's
trace.)
R :: The jth message received along prod
has sequence number j.

S :: ¢ = prod = c; = cons

i+l
Ci41 = COns = (ci,v) = (prod,v1+1)
{Messages from the producer and to
the consumer alternate.}
Q :: |cons| < N

{Network's trace will be extended,
i.e. a message will be received from
the producer or sent to the consumer,
if all N messages have not been sent
to the consumer.)

5.3 Proof of the Stenning Communication
Protocol

5.3.1 Harmony
{s and R =» r}

Trivial, since R => ¥y vansmitter and
= true.

Y receiver

§.3.2 Abstraction

Lemma 1l: Given s, every message sent
along cons must have been received along
prod.

Proof: Every message sent along cons
must have been received by the receiver
along ctr {from sreceiver)' Every mes-

sage reccived along ctr must have been
sent along ctr {from channel axiom Cl}.
Every message s:nt along ctr must have
been received along prod {from

stransmitter)‘
The lemma follows.

Lemma 2: Given s, the transmitter
receives an ack v only if v has been
sent along cons.

Proof: PFollows from 8, eceiver and chan-
channel axiom 71, applied to channel crt.

Proof of abgstraction hypothesis: From
lemma 1 and the fact that the jth message
sent along cons has sequence number j, it
follows that the sequence of messages sent
along cons is the same as the sequence
received along prod. Therefore it remains
to show that the networks operation alter-
nates between receiving from prod and
sending to cons. 1If ¢ = prod and cj =

prod, i < 3, in the natwork trace, then
from S ransmitter’ the transmitter must

have received vy along crt prior to receiw
ing vj along prod. From lemma 2, there

i N Lo AT T O

exists k,‘{<k<j such that (ck,vk) =
(cons, vi)' It is straightforward to show

that between every two message sends along
cons, there must be a message receipt
along prod.

5.3.3. Progress
{s and @ = q]

Q says that |cons| < N, From s, jth
data item sent along cons has sequence
number j. Therefore, no data item with
sequence number N has been sent along cons,
if Q holds. From lemma 2, transmitter
could not have received an ack for prod(N)
Therefore Q¢ ransmitter holads.

5.3.4 Boundedness
{s and Q = (I trace length of hi) <
i

F(trace length of H)},
for some function F} '

We show boundedness from s alone, Ve
will in fact show a bound on the number of
times that any message v is transmitted
along the channels crt and ctr. In any
computation of the network, consider the
point at vhich the transmitter last sent
message v along ctr. From S¢ransmitter’

transmitter has received 0 acks for v
alonq crt at that point. From channel
axiom C2, receiver has sent no more than
£.,(0) acks for v. Since v is the last
méssage being sent by the transmitter,
from S rcceiver’ the receiver sends an ack

every time it receives v and hence the
receiver could not have received v more
than f2(0) times. Therefore from C2

transmitter could have sent v at most
fz(fz(O)) times. A message is received

a bounded number of times if it is sent
a bounded number of times (from C2). The
result follows.

6. CONCLUSION

The goal of this paper has been to ex-
tend the ideas of sequential program prow-
ing to proofs of message communicating
systems, Ideas of pre- and post condi=
tions and boundedness seem to have natural
analogs in message passing systems. 1Itis
hoped that the full power of sequential
program proving methods can be applied to
these systems; to do so v2 need to develop
a convenient notation for descriptions of
traces and operations on thenm.

7. REFERENCES

[1] Apt, K.R., N. Francez and W.P. de
Roever, "A Proof System for Communi-
cating Sequential Processes,” TOPLAS,
Vol. 2, July 1980.

R

I I Y

e i

PRSP

[2)

13}

f41]

(5}

6]

{7

Hailpern, B.T,., "Verifying Concurrent
Processes Using Temporal Logic,"” Ph.D
hesis, Computer Systems Lab, Stanford
University, August 1980.

Nailpern, B. and S8, Owicki, "Modular
Verification of Computer Communication
Protocols,”™ Research Report RC8726,

IBM Watson Research Center, March 192l.

Levin, G.M. and D. Gries, "A Proof
System for Communicating Sequential
Processes," Acta Informatica 15,
Springer-Verlag, 1981.

Misra, J. and K.M. Chandy, "Proofs of
Networks of Processes,” 1EEE~-TSE,
Vol. SE-7, No. 4, July 1981.

Ossefort, M., "A Unified Approach to
Formal Verification of Network Safety
Properties,”™ Ph.D thesis, Computer
Sciences Department, University of
Texas, 1982,

Owicki, S. and L. Lamport, "Proving
Liveness Properties of Concurrent
Programs,” Computer Systems Labotatory,
Stanford University, 1980.

